338 THE CRYSTAL STRUCTURE

is 1-11 A and the average bridge B-H distance is
127 A. These results are not accurate enough to
confirm or refute the asymmetry of the bridge
hydrogen atoms.

The present results establish that simple substitu-
tional derivatives of decaborane are formed which
retain the essential symmetry of the isolated dec-
aborane molecule, and confirm the existence of a
1-ethyldecaborane which has been suggested by Blay,
Dunstan & Williams (1960) on the basis of chemical
and nuclear magnetic resonance evidence.

The author wishes to thank Dr D. Appleman of
the U.S. Geological Survey for the computation of
the Lorentz and polarization factors, R.D. Mason
for assistance with intensity measurements, Dr
S. Block for his interest and advice during the course
of the investigations, and G.Ross for supplying
the sample.
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The Relative Positions of Independent Molecules Within
the Same Asymmetric Unit

By MicrAEL G. RossMaNN aND D. M. BLow
M. R. C. Laboratory of Molecular Biology, Hills Road, Cambridge, England

AND MarJORIE M. HarpING* AND ELEANOR COLLER
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(Received 14 March 1963)

If x and x’ are position vectors of equivalent points in identical molecules in different parts of the
crystallographic asymmetric unit, then the linear relationship between these points may be written
as X' =[C]x +d, when [C] is a rotation matrix and d a translation vector. A function is derived for
determining d, given [C], when no knowledge of the phases is available.

Consider a crystal structure which contains two or
more molecules, or other identical distributions of
electron density, within the crystallographic asym-
metric unit. Such distributions of density will be
referred to as sub-units, In a previous paper we have
shown how the angular relationship between the
sub-units may be derived from the Patterson function
(Rossmann & Blow, 1962). This depended on the idea
that the Patterson vectors within one sub-unit
(the ‘self-vectors’) formed a similar distribution for
each sub-unit; so that a rotation can be found which
brings the self-vectors from one sub-unit into coin-
cidence with those from the other.

* Present address: Department of Chemistry, University
of Edinburgh, West Mains Road, Edinburgh 9, Scotland.

In this paper we shall consider how the °‘cross-
vectors’, or Patterson vectors from one sub-unit to
another, can be used to determine the translation
required to bring one sub-unit into coincidence with
the other, after suitable rotation about a given axis.
In other papers (Hodgkin, Harding, Coller & Ross-
mann, 1964; Blow, Rossmann & Jeffery, 1964) we
describe the application of this method to the pro-
teins insulin and chymotrypsin. In a further paper
(Rossmann & Blow, 1963) we have suggested how
the condition that the sub-units must be identical,
once their relative orientation and position are known,
may be used to determine phases, thus leading to
a solution of the structure.

Although the result of a rotation and translation
in three dimensions depends on the position of the
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rotation axis, the component of translation in a
direction parallel to the axis of rotation is independent
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Fig. 1. The position of the twofold rotation axis which relates
the two piglets is completely arbitrary. The diagram on
the left shows the situation when the translation is parallel
to the rotation axis. The diagram on the right has an
additional component of translation perpendicular to the
rotation axis, but the component parallel to the axis
remains unchanged.

of this position (Fig. 1). It is this quantity which can
be derived accurately by the method described below.
The effect of space group symmetry is to allow a
number of such translations to be determined, cor-
responding to choosing different pairs of sub-units
related by the same rotation. Finally the localization
in the Patterson projection of cross-vectors related
by a particular rotation gives a less accurate indication
of the positions of the sub-units in the unit cell.

Relationship between cross-vectors

The relation between two identical arrays of atoms,
A and B, may be expressed by a matrix [C] cor-
responding to a rotation about the origin of coor-
dinates, and a translation vector d, where

x/=[Clx{+d (1)

for the arrays of N atoms, i=1,...,N. In a
crystal, if [C] does not correspond to a crystallo-
graphic rotation, the relation (1) can only apply to
a localized group of atoms in the crystal. We define
a sub-unit A as the array of N atoms at positions x#
which are related to identical atoms at x? by (1).

It is convenient to choose a reference point S
near the centre of each sub-unit, as an origin of a
local system of coordinates X, so that

Xi=x{ -84 (2)
and

X2 <r (i=1,...,N).

(The purpose of choosing S near the centre of the

339

sub-unit is that r shall be as small as possible.) The
reference points are to be equivalent, so that

SP=[C]S4+d . 3)

It is convenient to define a translation indepen-
dently of the choice of origin. This requirement is
fulfilled by the vector

AAB=SB—SA. (4)
This is related to d by
A4P=([C]—-[I])S*+d.

where I is the identity matrix.

We shall now consider vectors between one sub-
unit and another, which may be called ‘cross-vectors’,
and we shall assume that [C] is known (Rossmann
& Blow, 1962). Every vector v from x# to x7 is
related to a vector v’ from x? to x#. To the extent
that we can demonstrate a relation between them,
independent of X; and X, the existence of any cross-
vector v implies the existence of another cross-vector
v’, determined only by [C] and A4Z, We propose to
determine the translation A4Z by searching the
Patterson distribution for appropriately related arrays
of vectors.

Let

v=x—x{=[Clx{ +d —x{=[C]X{ + A4Z _X{
by (1) and (2), and similarly let
V' =xf—xf=x{—[Cx{ —d=X2—[CIX# - A45.

Then, eliminating X# between the expressions for
v and v’

V' =[Clv— (] +[CHA**—([CP-[IDXf . (5)

Rotation of 180°

In three cases already studied we have found a rotation
of 180° relating protein sub-units (Rossmann & Blow,
1962; Hodgkin et al., 1964; Blow et al., 1964). Since
this appears to be a common mode of association of
sub-units, it is an important special case.
If [C] represents a rotation of 180°, [C]2=[l] and
(5) becomes
v'=[Clv—([1]+[C])A“? (6)

which is independent of the atomic positions X;.
This means the cross-vector v can always be super-
imposed on v’ by the rotation and translation given
by (6). It is possible to define a function 7'(A) which
will have a large value only if A has the value given
by (6).

T(A) = g P(v).P(v')dv" . (7)

dlv-Al<2r

Here P(v) represents the Patterson function, and v
and v’ are related by (6). The volume of integration
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will include all cross-vectors related by (6). (The
integration (7) is over a sphere; if more detailed
information about molecular shape were available
any other suitable shape could be used.)

The expression (7) can readily be expanded in a
form suitable for direct calculation from the observed
intensities. Putting u=v—A, one finds

Pu+A)P([Clu—A)du .

luf <27

T(A) = S

This form shows that the translation function depends
on comparing a region of the rotated Patterson func-
tion around —A with a region of the unrotated
Patterson function around + A. Expanding in Fourier
series

T(A) = S [ F% exp {27i(h.u+A)}]

juj<2r h

x [ F3 exp {27ip([Clu— A)}]du
P

=3 S FpF}exp {2ni(h—p). A}
h p

X S exp {(h+p[C]).u}du .
luj<2r

The integral has been discussed by Rossmann & Blow
(1962), where it is written as (U/V)Gyp exp (i£2pp).
In the present case 2y,=0, as the volume of inte-
gration is symmetrical about u=0. Using the Friedel
relationships this gives

T(A) = (U] V)%Z FiF2Gypcos 27(h—p).A. (8)
p

This may be recognized as a centrosymmetric Fourier
summation with coefficients

(ZPhop PO ps)

for the term with indices H=h—p.

Precise and imprecise parameters

Whereas d in equation (1) has a value as precise as
the values of atomic coordinates, the ‘centre’ of a
sub-unit is a much less precise concept. As shown in
Fig. 1, A4® has a precise component, t, parallel to
the rotation axis and an imprecise one perpendicular
to it; the component t is always the same, no matter
where the rotation axis is placed. The vector
((1]+[C])A42 in equation (6) is parallel to the rotation
axis, and is equal to 2t. Thus the vector v’ is super-
imposed on Vv by rotation of the Patterson, followed
by translation along the axial direction. The only
effect of the component of A perpendicular to the
rotation axis is to vary the region of the Patterson
over which the integral (7) is taken. T(A) will be
relatively insensitive to such variation, since the
superposable vectors lie in a region 2r in diameter.

It is therefore convenient to consider two com-
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ponents of A. Any peak in the translation function
T'(D) precisely determines one parameter, t, represent-
ing the translation parallel to the rotation axis
between two sub-units. At the same time it determines
in a relatively imprecise way the perpendicular
(or sideways) component, s, of the vector separating
the sub-units. This is illustrated in two dimensions
in Figs. 2, 3 and 4. Fig. 2 shows a postulated structure ;
Fig. 3 its Patterson function and Figs. 4(a), (b) and (c)
show various attempts at matching up the cross
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Fig. 2. The crosses represent atoms in a two-dimensional
model structure. The triangles are the points chosen as ap-
proximate centres of molecules 4 and B. A43 has com-
ponents t and s parallel and perpendicular to the screw
rotation axis, respectively.
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Fig. 3. The vectors arising from the structure in Fig. 2. The
self-vectors of molecules A and B are represented by -+
and - ; the cross-vectors from molecules 4 to B and B to 4

by x and 0. Triangles mark the position of +A4% and
_A4B,

Patterson vectors. In Fig. 4(a) the Patterson within
the circle centred at — A45 has been rotated about
the known rotation axis through the origin and trans-
lated by 2t parallel to this axis. This gives the best
match within the circle. A translation other than 2t
produces no overlap at all (Fig. 4(b)). If the circle
is placed at a centre A with the same component t
parallel to the rotation axis, but an altered per-
pendicular component, not all the vector coincidences
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Fig. 4. (a) Superposition of vectors around + A48 and —A4B
within a sphere of suitable radius, after rotating the latter
about the rotation axis through the Patterson origin and
translating by 2t parallel to the axis. (b) Similar super-
position with a wrong choice of the precise parameter t
producing no significant vector coincidences. (c) Similar
superposition but with the imprecise parameter s chosen
badly, producing good vector coincidences although some
fall outside the sphere of integration.

will lie within the circle, and a reduced value of T'(A)
will result (Fig. 4(c)).

General rotation

In the case of a 180° rotation ([C]2—[l])=0, which
gives (5) a simple form. A similar simplification may
be made in the case of » sub-units related by rotations
of 2m/n, by considering three of these sub-units
4,B,C, and letting v=x—x{ while v =xf—x{.
For a completely general rotation there is no way of
eliminating X# from (5). This means that no rotation
and translation of the Patterson function can lead to
exact superposition of all cross-vectors between the
two sub-units. Nevertheless, especially when a pair

AC17 — 23
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of sub-units is related by rotation through an angle
near to 0° or 180° all cross-vectors can be brought
close to superposition.

If [C] represents a rotation » about some axis,
[C]2 represents a rotation 2 about the same axis and
([C2—[1])X; is bound to lie in a plane perpendicular
to the axis of rotation. Bearing in mind that [X{|<v,
it follows that ([C2—[I))X{! must lie on a disc,
centred at the origin of coordinates, perpendicular
to the axis of rotation, of radius [2r sin x|. Equation
(5) thus indicates a rotation and translation of the
vector v’ which will cause the vector between it and
v to lie on such a disc. In this case the ‘translation
function’ must evaluate the correlation between the
Patterson density at v and that in the disc of possible
positions for v':

7(h) = S}UK%P(v) {SIXMP(v’)dxj}du ,

where v’ is related to v and X; by (5), and u=v—-A
as before. Making these substitutions

T(A)=SII _P@+2)
x {S P[C]u—A—([C]2—[l])X)dX}du :
1X|<r

The expansion in Fourier series yields
T(D) = 3 3 FFpGuywp cos 2n(h—p). A, (9)
h p .
where

wp = S exp {—27ip.([CR—[1])X}dX
X|<r

is a weighting function which gives full weight to
reflexions for which the vector p lies along the rotation
axis, and reduced weight elsewhere. It is, in fact,
the Fourier transform of a weighted disc, orientated
with its normal along the axis of [C], and is similar
to the function (1/277R)J1(27rR) which is the trans-
form of a uniform disc.

The summation (9) is seen to be a centrosymmetric
Fourier summation with coefficients

{%‘ Fh pFpwpGu_p,p}

for the term with indices H=h—p.

Effect of space group symmetry

So far, only an isolated pair of sub-units has been
considered. In space group Pl the choice of origin
is entirely arbitrary, and may be taken as the position
of S84, so that S4=0, SZ=A42.

In all cases of higher symmetry, the positions of
crystallographic symmetry elements provide reference
points in the unit cell from which the positions of
sub-units must be measured. In these cases there are
a number of distinet ways of choosing pairs of sub-
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units, so that each of these pairs will be associated
with a different translation vector A. The relation
between these values of A will usually allow the
positions of the sub-units to be related to those of the
symmetry elements.

A special difficulty arises in some cases where the
non-crystallographic rotation [C] is about an axis
perpendicular to a crystallographic symmetry axis,
because the sub-unit as defined may become infinite
in its extent in the direction parallel to the crystallo-
graphic axis. These points are illustrated in detail
in other papers (Hodgkin et al., 1964; Blow ef
al., 1964), which describe application of the trans-
lation function to space groups B3 and P2,.

Removal of self-vectors

It is important to remember that the self-vectors can
be made to superimpose by the rotation [C], with
any lattice translation (including zero) giving rise to
large origin peaks in 7'(A). These peaks can easily
swamp a peak due to superposition of cross-vectors,
especially when the translation A is small. It is
therefore important to remove the self-vectors.

We have attempted to do this by modifying the
Patterson coefficients so as to produce a region of
zero density within a volume U’ around each origin.
The modifying function

M) = Zmp exp {2zip.u} = 0 if u is within U’
=1 if u is outside U".
Then the modified Patterson function
2 Qy exp {2nih.x}
h

P'(u) = P(u).M(u) =

where
Qh =3F lzl—pmp
p

by the convolution theorem. From the definition of
M(u) it follows that

my = %/—[Spexp {—2nip.u}du
- S exp {—2nip.u}du] ,
o
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where V is the volume of the unit cell. Hence

mo=1-U"'JV
and
mp=—(U[V)Gp, o (where p%0),

Gp,o having the same significance as before. Hence
the modified coefficients are
UI) UI

G=Fi(1-5) = = By

10)
T 5oh (

If there is overlap between the volumes U’ centred
on neighbouring origins, the effective value of U’V
in (10) is altered. In this case an empirical value was
calculated by ensuring that the modified Patterson
density is zero at the origin. If k is the effective value
of U'JV

A-k)ZFi—k3 3 F};_,Gpo=0.
h h p=*h

k seldom differed by more than 5% from U’/V,
once all mistakes concerning the multiplicities had
been eliminated from the program.
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