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is 1-11 _~ and the  average bridge B - H  dis tance is 
1.27 ~ .  These results  are not  accurate  enough to 
confirm or refute  the  a s y m m e t r y  of the bridge 
hydrogen  atoms.  

The present  results  establish t h a t  simple substi tu-  
t ional  der ivat ives  of decaborane are formed which 
re ta in  the  essential  s y m m e t r y  of the isolated dec- 
aborane molecule, and  coIffirm the existence of a 
1-ethyldecaborane which has been suggested by  Blay,  
Duns t an  & Will iams (1960) on the  basis of chemical 
and nuclear  magnet ic  resonance evidence. 

The au thor  wishes to t h a n k  Dr  D. Appleman of 
the  U.S. Geological Survey for the computa t ion  of 
the  Lorentz and polar izat ion factors,  I~. D. Mason 
for assistance with in tensi ty  measurements ,  Dr  
S. Block for his interest  and advice during the course 
of the investigations,  and G. Ross for supplying 
the sample. 

References 
BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LooP- 

STRA, B. O., ~{ACGILLAVRY, C. H. • ~TEEN~ENDAAL, A.L. 
(1955). Acta Cryst. 8, 478. 

BLAY, N. J.,  DUNSTAN, I. & WILLIAMS, R. L. (1960). 
J. Chem. Soc. p. 430. 

BuSInG, W. R. & LEVY, H. A. (1959a). A Crystallographic 
Least Squares Refinement Program for the I B M  704. 
Oak Ridge National Laboratory Report 59-4-37. 

BUSING, W. R. & LEVY, H. A. (1959b). A Crystallographic 
_Function and Error Program for the I B M  704. Oak 
Ridge National Laboratory Report 59-12-3. 

JAMES, R. W. & BRINDLEY, G. W. (1931). Phil. Mag. 12, 
81. 

EARLE, J.  & HAUPTMAN, H. (1956). Acta Cryst. 9, 635. 
KASPER, J.  S., LUCHT, C. M. & HARKER, D. (1950). 

Acta Cryst. 3, 436. 
MCWEENY, R. (1951). Acta Cryst. 4, 513. 
MOORE, E. B., Jm,  DICKERSON, R. E. & LIPSCOMB, W. N. 

(1957). J. Chem. Phys. 27, 209. 
NORDMAN, C. E. & LIPSCOMB, W. N. (1953). J .  Chem.  

Phys. 21, 1856. 
POST, B., SC~W~_RTZ, R. S. & FANEUCHEN, I. (1951). 

.Rev. Sci. Instrum. 22, 218. 

Acta Cryst. (1964). 17, 338 

T h e  R e l a t i v e  P o s i t i o n s  of I n d e p e n d e n t  M o l e c u l e s  W i t h i n  

the Same Asymmetr ic  Unit 

BY MICHAEL G. ROSSMANN AND D. M. BLOW 

M. R. C. Laboratory of Molecular Biology, Hills Road, Cambridge, England 

AND M±tlJORIE M. HARDING* AND ELEANOR COLLEI~ 

Chemical Crystallography Laboratory, South Parlcs Road, Oxford, Engla~ut 

(Received 14 March 1963) 

If  x and x '  are position vectors of equivalent points in identical molecules in different parts of the 
crystallographic asymmetric unit, then the linear relationship between these points may  be written 
as x ' =  [C]x + d, when [el  is a rotation matr ix and d a translation vector. A function is derived for 
determining d, given [C], when no knowledge of the phases is available. 

Consider a crystal  s t ructure  which contains two or 
more molecules, or other  identical  dis tr ibut ions of 
electron densi ty,  within the  crystal lographic asym- 
metr ic  unit.  Such distr ibut ions of densi ty  will be 
referred to as sub-units. In a previous paper we have 
shown how the angular  relat ionship between the  
sub-units  m a y  be derived from the Pa t t e r son  funct ion 
(Rossmann & Blow, 1962). This depended on the idea 
t ha t  the  Pa t t e r son  vectors wi thin  one sub-uni t  
(the 'self-vectors') formed a similar dis t r ibut ion for 
each sub-uni t ;  so t h a t  a ro ta t ion  can be found which 
brings the self-vectors f rom one sub-unit  into coin- 
cidence with  those from the other. 

* Present address: Department of Chemistry, University 
of Edinburgh, West Mains Road, Edinburgh 9, Scotland. 

In  this paper  we shall consider how the 'cross- 
vectors ' ,  or Pa t t e r son  vectors from one sub-unit  to 
another,  can be used to determine the  t rans la t ion  
required to bring one sub-unit  into coincidence with  
the other, after suitable rotation about a given axis. 
In  other papers  (Hodgkin, Harding,  Coller & Ross- 
mann,  1964; Blow, Rossmann & Jeffery,  1964 )we  
describe the  application of this method  to the pro- 
teins insulin and chymotrypsin.  I n  a fur ther  paper  
(Rossmann & Blow, 1963) we have suggested how 
the condition t ha t  the sub-units  mus t  be identical ,  
once their  relat ive or ientat ion and position are known,  
m a y  be used to determine phases,  thus  leading to 
a solution of the s t ructure .  

Although the resul t  of a ro ta t ion  and t rans la t ion  
in three dimensions depends on the posit ion of the  
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rotation axis, the  component of translation in a 
direction parallel to the axis of rotation is independent 

A 

~ ----7 

Fig. 1. The position of the twofold rotation axis which relates 
the two piglets is completely arbitrary. The diagram on 
the left shows the situation when the translation is parallel 
to the rotation axis. The diagram on the right has an 
additional component of translation perpendicular to the 
rotation axis, but the component parallel to the axis 
remains unchanged. 

of this  posit ion (Fig. 1). I t  is this  quan t i ty  which can 
be derived accurate ly  by  the method described below. 
The effect of space group s y m m e t r y  is to allow a 
number  of such t ransla t ions  to be determined,  cor- 
responding to choosing different  pairs  of sub-units  
related by  the same rotation. F ina l ly  the localization 
in  the Pa t te rson  project ion of cross-vectors re la ted 
by  a par t icular  rotat ion gives a less accurate indicat ion 
of the positions of the sub-units  in the uni t  cell. 

R e l a t i o n s h i p  b e t w e e n  c r o s s - v e c t o r s  

The relat ion between two ident ical  arrays of atoms, 
A and  B, m a y  be expressed by  a ma t r i x  [C] cor- 
responding to a rotat ion about  the origin of coor- 
dinates,  and a t rans la t ion  vector d, where 

xg = [C]x/a + d  (1) 

for the arrays of N atoms, i = 1 ,  . . . , N .  In  a 
crystal ,  if [C] does not correspond to a crystallo- 
graphic rotation, the relat ion (1) can only app ly  to 
a localized group of atoms in the crystal .  We define 
a sub-unit A as the a r ray  of 2i atoms at  positions x#  
which are re la ted to ident ical  atoms at x B by  (1). 

I t  is convenient  to choose a reference point  S 
near  the centre of each sub-unit ,  as an  origin of a 
local sys tem of coordinates X, so tha t  

X ~ = x ¢ - S ~  (2) 
and 

IX•l<r ( i = I , . . . , N ) .  

(The purpose of choosing S near  the centre of the 

sub-uni t  is tha t  r shall  be as smal l  as possible.) The 
reference points  are to be equivalent ,  so tha t  

S B = [C]S a + d . (3) 

I t  is convenient  to define a t rans la t ion  indepen- 
den t ly  of the choice of origin. This requi rement  is 
fulf i l led by  the vector 

A ~B-- S B -  S ~. (4) 

This is re la ted to d by  

A aB = ([C] - [I])S a + d .  

where I is the ident i ty  matr ix .  
We shall  now consider vectors between one sub- 

uni t  and another,  which m a y  be called 'cross-vectors', 
and  we shall  assume tha t  [C] is known (Rossmann 
& Blow, 1962). Every  vector v from x• to x~ is 
re la ted to a vector v '  from xg to x~. To the ex tent  
tha t  we can demonst ra te  a re la t ion between them, 
independent  of X~ and  Xj, the  existence of any  cross- 
vector v implies the existence of another  cross-vector 
v' ,  de termined only by  [e l  and  A ~8. We propose to 
determine the t rans la t ion  A ~B by  searching the 
Pat terson dis t r ibut ion for appropr ia te ly  re la ted arrays 
of vectors. 

Let  

V = X f - - x A  = [C]x~ + d - - x A =  [C]X¢ + AAB--X A 

by (1) and (2), and s imi lar ly  let 

V'=xA--xf----X¢-- [C]xA-- d_--X~-- [C]XA-- Axe. 

Then, e l iminat ing X¢ between the expressions for 
v and  v '  

v '  = [ C ] v -  ([1] + [C])A~B-- ( [C]2-  [1])X~. (5) 

R o t a t i o n  of 180 ° 

In  three eases a l ready s tudied we have found a rotat ion 
of 180 ° re la t ing prote in  sub-units  (Rossmann & Blow, 
1962; Hodgkin  et al., 1964; Blow et al., 1964). Since 
this  appears to be a common mode of association of 
sub-units,  i t  is an  impor tan t  special case. 

If  [C] represents a rotat ion of 180 °, [C]2=[1] and 
(5) becomes 

v ' =  [ C ] v -  ([1] + [C])A aB (6) 

which is independent  of the atomic positions Xj. 
This means  the cross-vector v can always be super- 
imposed on v '  by  the rotat ion and  t rans la t ion  given 
by  (6). I t  is possible to define a funct ion T(A) which 
will have a large value only if A has the value given 
by  (6). 

T(A) = flv-Al<2r P ( v ) . P ( v ' ) d v ' .  (7) 

Here P(v) represents  the Pat terson function, and v 
and  v'  are re la ted by  (6). The volume of in tegrat ion 



340 THE RELATIVE POSITIONS OF INDEPENDENT MOLECULES 

will include all cross-vectors related by (6). (The 
integration (7) is over a sphere; if more detailed 
information about molecular shape were available 
any other suitable shape could be used.) 

The expression (7) can readily be expanded in a 
form suitable for direct calculation from the observed 
intensities. Put t ing u - - v - A ,  one finds 

T(A) = I P(u  + A)P([C]u - A) du. 
lul <2r 

This form shows that  the translation function depends 
on comparing a region of the rotated Pat terson func- 
t ion around --A with a region of the unrotated 
Pat terson function around + A. Expanding in Fourier 
series 

x [ ~  F~ exp {2z ip ( [C]u -  A)}] du 
P 

2 - .~Y Z F~ Fp exp ( 2 z i ( h  - p ) . A } 
h p 

× I exp {(h + p[C]), u}du .  
d [u[ <2r  

The integral has been discussed by Rossmalm & Blow 
(1962), where it  is writ ten as (U/V)GhpeX p (iQhp). 
In  the present case Qhp=0, as the volume of inte- 
gration is symmetrical about u = 0. Using the Friedel 
relationships this gives 

T(A) = ( U / V ) 2 2  F~F~,Ghp cos 2 ~ ( h - p ) . A .  (8) 
h p 

This may  be recognized as a centrosymmetric Fourier 
summation with coefficients 

F 2  2 {z 
P 

for the term with indices H = h - p .  

Precise and imprecise parameters 

Whereas d in equation (1) has a value as precise as 
the values of atomic coordinates, the 'centre' of a 
sub-unit is a much less precise concept. As shown in 
Fig. 1, A ~B has a precise component, t, parallel to 
the rotation axis and an imprecise one perpendicular 
to it; the component t is always the same, no ma~ter 
where the rotation axis is placed. The vector 
([1] + [C])A aB in equation (6) is parallel to the rotation 
axis, and is equal to 2t. Thus the vector v'  is super- 
imposed on v by rotation of the Patterson, followed 
by translation along the axial direction. The only 
effect of the component of A perpendicular to the 
rotation axis is to vary  the region of the Patterson 
over which the integral (7) is taken. T(A) will be 
relatively insensitive to such variation, since the 
superposable vectors lie in a region 2r in diameter. 

I t  is therefore convenient to consider two com- 

ponents of A. Any peak in the translat ion function 
T(A) precisely determines one parameter,  t, represent- 
ing the translation parallel to the rotation axis 
between two sub-units. At the same time it determines 
in a relatively imprecise way the perpendicular 
(or sideways) component, s, of the vector separating 
the sub-units. This is i l lustrated in two dimensions 
in Figs. 2, 3 and 4. Fig. 2 shows a postulated structure;  
Fig. 3 its Pat terson function and Figs. 4(a), (b) and (c) 
show various at tempts  at  matching up the cross 

/ I '  
I 

I I 
t I 

s~AA8  I 
I 

/ I$  

- 2 4  

Fig .  2. T h e  c rosses  r e p r e s e n t  a t o m s  in a t w o - d i m e n s i o n a l  
m o d e l  s t r u c t u r e .  T h e  t r i a n g l e s  a r e  t h e  p o i n t s  c h o s e n  as  a p -  
p r o x i m a t e  c e n t r e s  of m o l e c u l e s  A a n d  B .  A A B  h a s  c o m -  
p o n e n t s  t a n d  s pa ra l l e l  a n d  p e r p e n d i c u l a r  t o  t h e  s c r e w  
r o t a t i o n  ax i s ,  r e s p e c t i v e l y .  
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Fig .  3. T h e  v e c t o r s  a r i s ing  f r o m  t h e  s t r u c t u r e  in  F ig .  2. T h e  
s e l f - v e c t o r s  of  m o l e c u l e s  A a n d  B a r e  r e p r e s e n t e d  b y  + 
a n d  • ; t h e  c r o s s - v e c t o r s  f r o m  m o l e c u l e s  A t o  B a n d  B to  A 

by × and 0. Triangles mark the position of + /V z and 
_A~B. 

Pat terson vectors. In Fig. 4(a) the Patterson ~dthin 
the circle centred at  - A  ~B has been rotated about 
the known rotation axis through the origin and trans- 
lated by 2t parallel to this axis. This gives the best 
match within the circle. A translation other than  2t 
produces no overlap at  all (Fig. 4(b)). If the circle 
is placed at  a centre A with the same component t 
parallel to the rotation axis, but an altered per- 
pendicular component, not all the vector coincidences 
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Fig. 4. (a) Superposi t ion  of vec tors  a round  + AAB and  --AAB 
with in  a sphere of sui table  radius,  a f te r  ro ta t ing  the  la t t e r  
a b o u t  the  ro ta t ion  axis th rough  the  P a t t e r s o n  origin and  
t rans la t ing  b y  2 t  parallel  to  the  axis. (b) Similar super-  
posi t ion wi th  a wrong choice of the  precise p a r a m e t e r  t 
p roduc ing  no significant vec to r  coincidences.  (c) Similar 
superpos i t ion  b u t  wi th  the  imprecise p a r a m e t e r  s chosen 
bad ly ,  p roduc ing  good vec to r  coincidences a l though some 
fall outs ide  the  sphere  of in tegra t ion.  

will lie within the circle, and a reduced value of T(A) 
will result (Fig. 4(c)). 

of sub-units is related by rotation through an angle 
near to 0 ° or 180 °, all cross-vectors can be brought 
close to superposition. 

If [C] represents a rotat ion x about some axis, 
[C] 2 represents a rotat ion 2x about the same axis and 
([C] 2 -  [1])Xj is bound to lie in a plane perpendicular 
to the axis of rotation. Bearing in mind tha t  IX~[< r, 
i t  follows tha t  ([C]2-[I])X~ must  lie on a disc, 
centred at  the origin of coordinates, perpendicular 
to the axis of rotation, of radius [2r sin ~[. Equat ion 
(5) thus indicates a rotat ion and translat ion of the 
vector v'  which will cause the vector between i t  and 
v to lie on such a disc. In this case the ' t ranslat ion 
function' must  evaluate the correlation between the 
Patterson density at v and tha t  in the disc of possible 
positions for v ' :  

T(A) = I,ui<2 P(v) l llxj,<rP(v')dX'}du ' 

where v '  is related to v and Xj by (5), and u = v - A  
as before. Making these substitutions 

T(A) = I P (u  + A) 
d [ul < 2r 

The expansion in Fourier series yields 

T ( A ) =  ~.,~,F2hF~GhpWpCOS2zz(h--p).A, (9) 
h p 

where 

Wp : I exp {-- 2~ip .  ([C]2-- [1])X} dX 
.) IXl <r  

is a weighting function which gives full weight to 
reflexions for which the vector p lies along the rotation 
axis, and reduced weight elsewhere. I t  is, in fact, 
the Fourier transform of a weighted disc, orientated 
with its normal along the axis of [C], and is similar 
to the function (1/2~rR)Jl(2:~rR) which is the trans- 
form of a uniform disc. 

The summation (9) is seen to be a centrosymmetric 
Fourier summation with coefficients 

{ 2  F2_pF~wpGH-p,p} 
p 

for the term with indices H = h - p .  

General rotation 

In  the case of a 180 ° rotat ion ([C]2- [l]) =0 ,  which 
gives (5) a simple form. A similar simplification may 
be made in the case of n sub-units related by rotations 
of 2n/n, by considering three of these sub-units 
A, B, C, and lett ing v = x B -  x~ while v ' =  x B -  x~. 
For a completely general rotation there is no way of 
eliminating X~ from (5). This means tha t  no rotation 
and translation of the Patterson function can lead to 
exact superposition of all cross-vectors between the 
two sub-units. Nevertheless, especially when a pair 

Effect of space group s y m m e t r y  

So far, only an isolated pair of sub-units has been 
considered. In space group P1 the choice of origin 
is entirely arbitrary,  and may be taken as the position 
of S a, so tha t  S a = 0 ,  S B = A  aB. 

In  all cases of higher symmetry,  the positions of 
crystallographic symmetry  elements provide reference 
points in the unit  cell from which the positions of 
sub-units must  be measured. In  these cases there are 
a number of distinct ways of choosing pairs of sub- 

A C 17 ~ 23 
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units, so that  each of these pairs will be associated 
with a different translation vector A. The relation 
between these values of A will usually allow the 
positions of the sub-units to be related to those of the 
symmetry elements. 

A special difficulty arises in some cases where the 
non-crystallographic rotation [C] is about an axis 
perpendicular to a crystallographic symmetry axis, 
because the sub-unit as defined may become infinite 
in its extent in the direction parallel to the crystallo- 
graphic axis. These points are illustrated in detail 
in other papers (Hodgkin et al., 1964; Blow et 
al., 1964), which describe application of the trans- 
lation function to space groups R3 and P21. 

Removal  of self-vectors 

I t  is important to remember that  the self-vectors can 
be made to superimpose by the rotation [C], with 
any lattice translation (including zero) giving rise to 
large origin peaks in T(A). These peaks can easily 
swamp a peak due to superposition of cross-vectors, 
especially when the translation A is small. It  is 
therefore important to remove the self-vectors. 

We have attempted to do this by modifying the 
Patterson coefficients so as to produce a region of 
zero density within a volume U' around each origin. 
The modifying function 

M(u) -- ~ mp exp {2:alp. u) = 0 if u is within U' 
P : 1 if u is outside U'. 

Then the modified Patterson function 

P'(u) = P(u) .M(u)  = 2~ Qh exp {2uih.x} 
h 

where 
Qh ~--- 2 .F2h_pmp 

P 

by the convolution theorem. From the definition of 
M(u) it follows that  

1 
mp = -~ [ Irexp { -  2zdp . u)du 

- fv, exp { - 2 ~ i p . u } d u ]  , 

where V is the volume of the unit cell. Hence 

mo = 1 - U'/V 
and 

rap=-(U/V)Gp,  0 (where p 4 0 ) ,  

Gp,0 having the same significance as before. Hence 
the modified coefficients are 

/ p , h  

If there is overlap between the volumes U' centred 
on neighbouring origins, the effective value of U'/V 
in (I0) is altered. In this case an empirical value was 
calculated by ensuring that  the modified Patterson 
density is zero at the origin. If k is the effective value 
of U'/V 

( i -k )  2 F ~ - k  2 : 2  FLpap,0 = 0 
h h p*h 

k seldom differed by more than 5% from U'/V, 
once all mistakes concerning the multiplicities had 
been eliminated from the program. 
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